Coulomb drag between two graphene layers at different temperatures

نویسندگان

چکیده

We theoretically study the Coulomb drag in graphene when there is a temperature difference between layers. Within degenerate limit for equal layer densities, we find that this can lead to significant deviations from usual quadratic dependence of resistivity. The exact behavior depends strongly on phase space available intraband scattering, and not symmetrical temperatures layers are interchanged. In particular, one at much higher $T$ than other, resistivity behaves as ${\ensuremath{\rho}}_{D}\ensuremath{\sim}T/{d}^{5}$, where $d$ interlayer separation. magnitude always larger active temperature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb drag between disordered two-dimensional electron-gas layers.

We derive and evaluate expressions for the frictional Coulomb drag between disordered two-dimensional electron gas layers. Our derivation is based on the memory-function formalism and the expression for the drag reduces to previously known results in the ballistic limit. We find that Coulomb drag is appreciably enhanced by disorder at low temperatures when the mean-free-path within a layer is c...

متن کامل

Coulomb drag mechanisms in graphene.

Recent measurements revealed an anomalous Coulomb drag in graphene, hinting at new physics at charge neutrality. The anomalous drag is explained by a new mechanism based on energy transport, which involves interlayer energy transfer, coupled to charge flow via lateral heat currents and thermopower. The old and new drag mechanisms are governed by distinct physical effects, resulting in starkly d...

متن کامل

Theory of Coulomb drag in graphene

We study the Coulomb drag between two single graphene sheets in intrinsic and extrinsic graphene systems with no interlayer tunneling. The general expression for the nonlinear susceptibility appropriate for single-layer graphene systems is derived using the diagrammatic perturbation theory, and the corresponding exact zerotemperature expression is obtained analytically. We find that, despite th...

متن کامل

Negative Coulomb Drag in Double Bilayer Graphene.

We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2022

ISSN: ['1098-0121', '1550-235X', '1538-4489']

DOI: https://doi.org/10.1103/physrevb.106.245414